Automated abnormality detection in lower extremity radiographs using deep learning



  • 1.

    Yelin, E., Weinstein, S. & King, T. The burden of musculoskeletal diseases in the United States. Semin. Arthritis Rheum. 46, 259–60. (2016).

  • 2.

    Amin, S., Achenbach, S. J., Atkinson, E. J., Khosla, S. & Melton, L. J. III Trends in fracture incidence: a population-based study over 20 years. J. Bone Miner. Res. 29, 581–589 (2014).

  • 3.

    Gyftopoulos, S. et al. Changing musculoskeletal extremity imaging utilization from 1994 through 2013: a Medicare beneficiary perspective. Am. J. Roentgenol. 209, 1103–1109 (2017).

  • 4.

    Lee, C. S., Nagy, P. G., Weaver, S. J. & Newman-Toker, D. E. Cognitive and system factors contributing to diagnostic errors in radiology. Am. J. Roentgenol. 201, 611–617 (2013).

  • 5.

    Bhargavan, M., Kaye, A. H., Forman, H. P. & Sunshine, J. H. Workload of radiologists in United States in 2006–2007 and trends since 1991–1992. Radiology 252, 458–467 (2009).

  • 6.

    Rajpurkar, P. et al. MURA: large dataset for abnormality detection in musculoskeletal radiographs. Preprint at https://arxiv.org/abs/1712.06957 (2017).

  • 7.

    Rajpurkar, P. et al. Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 15, e1002686 (2018).

  • 8.

    Thian, Y. L. et al. Convolutional neural networks for automated fracture detection and localization on wrist radiographs. Radiology: Artificial Intelligence 1, e180001 (2019).

  • 9.

    Huh, M., Agrawal, P. & Efros, A. A. What makes ImageNet good for transfer learning? Preprint at https://arxiv.org/abs/1608.08614 (2016).

  • 10.

    Rajpurkar, P. et al. CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. Preprint at https://arxiv.org/abs/1711.05225 (2017).

  • 11.

    Larson, D. B. et al. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 287, 313–22. (2018).

  • 12.

    Antony, J., McGuinness, K., O’Connor, N. E. & Moran K. Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In Proceedings of the International Conference on Pattern Recognition 1195–1200 (2017).

  • 13.

    Bi, L., Kim, J., Kumar, A. & Feng, D. Automatic liver lesion detection using cascaded deep residual networks. Preprint at https://arxiv.org/abs/1704.02703 (2017).

  • 14.

    Zhang, R. et al. Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE J. Biomed. Health Inform. 21, 41–47 (2017).

  • 15.

    Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016).

  • 16.

    Greenspan, H. et al. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35, 1153–1159 (2016).

  • 17.

    Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122–1131 (2018).

  • 18.

    Yan, C. et al. Weakly supervised deep learning for thoracic disease classification and localization on chest X-rays. Preprint at https://arxiv.org/abs/1807.06067 (2018).

  • 19.

    Bar, Y. et al. Chest pathology detection using deep learning with non-medical training. In Proceedings of the International Symposium on Biomedical Imaging 294–297 (2015).

  • 20.

    Olczak, J. et al. Artificial intelligence for analyzing orthopedic trauma radiographs: deep learning algorithms—are they on par with humans for diagnosing fractures? Acta Orthop. 88, 581–586 (2017).

  • 21.

    Lindsey, R. et al. Deep neural network improves fracture detection by clinicians. Proc. Natl Acad. Sci. USA 115, 11591–11596 (2018).

  • 22.

    Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2921–2929 (IEEE, 2016).

  • 23.

    Chartrand, G. et al. Deep learning: a primer for radiologists. Radiographics 37, 2113–31. (2017).

  • 24.

    Yosinski, J., Clune, J., Bengio, Y. & Lipson H. How transferable are features in deep neural networks? In Proceedings of the 27th International Neural Information Processing Systems Conference 3320–3328 (MIT Press, 2014).

  • 25.

    Dunnmon, J. A. et al. Assessment of convolutional neural networks for automated classification of chest radiographs. Radiology. 290, 537–544 (2019).

  • 26.

    Gale, W., Oakden-Rayner, L., Carneiro, G., Bradley, A. P. & Palmer, L. J. Detecting hip fractures with radiologist-level performance using deep neural networks. Preprint at https://arxiv.org/abs/1711.06504 (2017).

  • 27.

    Krupinski, E. A., Berbaum, K. S., Caldwell, R. T., Schartz, K. M. & Kim, J. Long radiology workdays reduce detection and accommodation accuracy. J. Am. Coll. Radiol. 7, 698–704 (2010).

  • 28.

    Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015).

  • 29.

    He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).

  • 30.

    Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 4700–4708 (IEEE, 2017).

  • 31.

    He, K., Zhang, X., Ren, S. & Sun J. Delving deep into rectifiers. Surpassing human-level performance on ImageNet classification. In Proceedings of the International Conference on Computer Vision 1026–1034 (2015).

  • 32.

    DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 44, 837–845 (1988).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *