Learning as the unsupervised alignment of conceptual systems



  • 1.

    Fenson, L. et al. Variability in early communicative development. Monographs Soc. Res. Child Dev. 59, 1–185 (1994).

  • 2.

    Quine, W. V. O. Word and Object (MIT Press, 1960).

  • 3.

    McMurray, B., Horst, J. S. & Samuelson, L. K. Word learning emerges from the interaction of online referent selection and slow associative learning. Psychol. Rev. 119, 831–877 (2012).

  • 4.

    Yu, C. & Smith, L. B. Modeling cross-situational word-referent learning: prior questions. Psychol. Rev. 119, 21–39 (2012).

  • 5.

    Bell, A. J. & Sejnowski, T. J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995).

  • 6.

    Chambers, K. E., Onishi, K. H. & Fisher, C. Infants learn phonotactic regularities from brief auditory experience. Cognition 87, B69–B77 (2003).

  • 7.

    Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

  • 8.

    Younger, B. A. & Cohen, L. B. Developmental change in infants’ perception of correlations among attributes. Child Dev. 57, 803–815 (1986).

  • 9.

    Caron, M., Bojanowski, P., Joulin, A. & Douze, M. Deep clustering for unsupervised learning of visual features. In Proceedings of the 15th European Conference on Computer Vision 132–149 (Springer, 2018).

  • 10.

    Pennington, J., Socher, R. & Manning, C. D. GloVe: global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing 1532–1543 (Association for Computational Linguistics, 2014).

  • 11.

    Tyler, L. K. & Moss, H. E. Towards a distributed account of conceptual knowledge. Trends Cogn. Sci. 5, 244–252 (2001).

  • 12.

    Martin, C. B., Douglas, D., Newsome, R. N., Man, L. L. & Barense, M. D. Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream. eLife 7, e31873 (2018).

  • 13.

    de Beeck, H. P. O., Pillet, I. & Ritchie, J. B. Factors determining where category-selective areas emerge in visual cortex. Trends Cogn. Sci. 23, 784–797 (2019).

  • 14.

    Marks, L. E. The Unity of the Senses: Interrelations among the Modalities (Academic Press, 1978).

  • 15.

    de Sa, V. R. & Ballard, D. H. Category learning through multimodality sensing. Neural Comput. 10, 1097–1117 (1998).

  • 16.

    Fazly, A., Alishahi, A. & Stevenson, S. A probabilistic computational model of cross-situational word learning. Cogn. Sci. 34, 1017–1063 (2010).

  • 17.

    Goodman, N., Tenenbaum, J. B. & Black, M. J. A Bayesian framework for cross-situational word-learning. In Advances in Neural Information Processing Systems 457–464 (NIPS Foundation, 2008).

  • 18.

    Smith, L. & Yu, C. Infants rapidly learn word-referent mappings via cross-situational statistics. Cognition 106, 1558–1568 (2008).

  • 19.

    Kiela, D. & Bottou, L. Learning image embeddings using convolutional neural networks for improved multi-modal semantics. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing 36–45 (Association for Computational Linguistics, 2014).

  • 20.

    Lazaridou, A., Pham, N. T. & Baroni, M. Combining language and vision with a multimodal skip-gram model. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 153–163 (Association for Computational Linguistics, 2015).

  • 21.

    Ngiam, J. et al. Multimodal deep learning. In Proceedings of the 28th International Conference on Machine Learning 689–696 (ACM, 2011).

  • 22.

    Ororbia, A., Mali, A., Kelly, M. & Reitter, D. Like a baby: visually situated neural language acquisition. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics 5127–5136 (Association for Computational Linguistics, 2019).

  • 23.

    Lewis, M., Zettersten, M. & Lupyan, G. Distributional semantics as a source of visual knowledge. Proc. Natl Acad. Sci. USA 116, 19237–19238 (2019).

  • 24.

    Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (Henry Holt, 1982).

  • 25.

    Amodio, M. & Krishnaswamy, S. MAGAN: aligning biological manifolds. In Proceedings of the 35th International Conference on Machine Learning 215–223 (PMLR, 2018).

  • 26.

    Ham, J., Lee, D. D. & Saul, L. K. Semisupervised alignment of manifolds. In Proceedings of the 10th International Workshop Artificial Intelligence and Statistics 120–127 (Society for Artificial Intelligence and Statistics, 2005).

  • 27.

    Wang, C. & Mahadevan, S. Manifold alignment using procrustes analysis. In Proceedings of the 25th International Conference on Machine Learning 1120–1127 (ACM, 2008).

  • 28.

    Wang, C. & Mahadevan, S. Heterogeneous domain adaptation using manifold alignment. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence 1541–1546 (AAAI Press, 2011).

  • 29.

    Shepard, R. N. & Chipman, S. Second-order isomorphism of internal representations: shapes of states. Cogn. Psychol. 1, 1–17 (1970).

  • 30.

    Kuznetsova, A. et al. The Open Images dataset V4: unified image classification, object detection, and visual relationship detection at scale. Preprint at https://arxiv.org/abs/1811.00982 (2018).

  • 31.

    Gemmeke, J. F. et al. AudioSet: an ontology and human-labeled dataset for audio events. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing 776–780 (IEEE, 2017).

  • 32.

    Kuperman, V., Stadthagen-Gonzalez, H. & Brysbaert, M. Age-of-acquisition ratings for 30,000 English words. Behav. Res. Methods 44, 978–990 (2012).

  • 33.

    Goldfield, B. A. & Reznick, J. S. Early lexical acquisition: rate, content and the vocabulary spurt. J. Child Language 17, 171–183 (1990).

  • 34.

    Samuelson, L. K. Statistical regularities in vocabulary guide language acquisition in connectionist models and 15–20-month-olds. Dev. Psychol. 38, 1016–1037 (2002).

  • 35.

    Mervis, C. B. in Emory Symposia in Cognition, 1. Concepts and Conceptual Development: Ecological and Intellectual Factors in Categorization 201–233 (Cambridge Univ. Press, 1987).

  • 36.

    Jones, S. S., Smith, L. B. & Landau, B. Object properties and knowledge in early lexical learning. Child Dev. 62, 499–516 (1991).

  • 37.

    Samuelson, L. K. & Smith, L. B. Early noun vocabularies: do ontology, category structure and syntax correspond? Cognition 73, 1–33 (1999).

  • 38.

    Frank, M. C., Slemmer, J. A., Marcus, G. F. & Johnson, S. P. Information from multiple modalities helps 5-month-olds learn abstract rules. Dev. Sci. 12, 504–509 (2009).

  • 39.

    Spelke, E. S. & Kinzler, K. D. Core knowledge. Dev. Sci. 10, 89–96 (2007).

  • 40.

    Ullman, S., Harari, D. & Dorfman, N. From simple innate biases to complex visual concepts. Proc. Natl Acad. Sci. USA 109, 18215–18220 (2012).

  • 41.

    Gentner, D. Structure-mapping: a theoretical framework for analogy. Cogn. Sci. 7, 155–170 (1983).

  • 42.

    Holyoak, K. J. & Thagard, P. Analogical mapping by constraint satisfaction. Cogn. Sci. 13, 295–355 (1989).

  • 43.

    Larkey, L. B. & Love, B. C. CAB: connectionist analogy builder. Cogn. Sci. 27, 781–794 (2003).

  • 44.

    Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. Preprint at https://arxiv.org/abs/1409.1556 (2015).

  • 45.

    Deng, J. et al. ImageNet: a large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *